Activation of Electron-Transfer Reduction of Oxygen by Hydrogen Bond Formation of Superoxide Anion with Ammonium Ion

Kei Ohkubo, Hironori Kitaguchi, and Shunichi Fukuzumi*

Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

Received: June 30, 2006; In Final Form: August 16, 2006

A hydrogen bond formed between the superoxide anion and the ammonium ion (NH_4^+) accelerates electron transfer from the C_{60} radical anion to oxygen significantly, whereas the tetra-*n*-butylammonium ion has no ability to form a hydrogen bond with the superoxidie anion, exhibiting no acceleration of the electron-transfer reduction of oxygen. The second-order rate constant of electron transfer from $C_{60}^{\bullet-}$ to O_2 increases linearly with increasing concentration of NH_4^+ . This indicates that $O_2^{\bullet-}$ produced in the electron transfer from $C_{60}^{\bullet-}$ to O_2 increases linearly of O_2 is stabilized by 1:1 complex formation between $O_2^{\bullet-}$ and NH_4^+ . The 1:1 complex formed between $O_2^{\bullet-}$ and NH_4^+ results in a positive shift of the reduction potential of O_2 with increasing concentration of NH_4^+ , leading to the acceleration of electron transfer from $C_{60}^{\bullet-}$ to O_2 .

Introduction

Dioxygen (O_2) is an ideal oxidant for the chemical industry as well as for biological systems, because O₂ is abundant and environmentally benign. Because direct oxidation of substrates with the triplet O_2 is spin-forbidden, nature has developed numerous metalloprotein systems for the reductive activation of O₂, which is finely controlled by hydrogen bonding between the reduced O₂ and an amino acid residue of the metalloproteins.^{1,2} In general, hydrogen bonding is a specific recognition motif which can selectively stabilize or destabilize different oxidation states of substrates, thus modulating the electrontransfer processes.³⁻⁵ In photosynthesis, for example, two p-benzoquinones termed Q_a and Q_b act in concert to enable efficient charge separation to take place.^{6,7} Q_a and Q_b are often identical quinones: plastoquinone in higher plants and ubiquinone in bacterial systems.⁸ Specific hydrogen bonds to nearby amino acid residues are able to tailor the quinone to perform a specific function.9 Hydrogen bonding is expected to be more favorable in the one-electron reduced state such as the semiquinone radical anion, because of the negative charge present in the oxygen atom of the radical anion. The strong hydrogen bond formation of the semiquinone radical anion with hydrogen bond donors, which can modulate the electron-transfer reduction of *p*-benzoquinone, has been reported.^{10–12} However, the effects of hydrogen bond formation between the superoxide anion $(O_2^{\bullet-})$ and hydrogen bond donors on the reduction potential of O_2 and electron-transfer reactions from electron donors to O_2 have yet to be examined.13

We report herein hydrogen bond formation between $O_2^{\bullet-}$ and the ammonium ion in a polar solvent, which can promote the electron-transfer reduction of O_2 . The fullerene radical anion ($C_{60}^{\bullet-}$), which can be produced by the photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide [(BNA)₂] to C_{60}^{-14} was used to examine electron-transfer reduction of O_2 in the presence of NH_4^+ . The effect of NH_4^+ on the one-electron reduction potential of O_2 and the detection of the NH_4^+ complex of $O_2^{\bullet-}$ by ESR provide valuable insight into the mechanism of the NH_4^+ -promoted electron-transfer reduction of O_2 .

Experimental Section

Materials. Fullerene (C₆₀) was purchased from Tokyo Kasei Organic Chemicals, Japan. The dimeric 1-benzyl-1,4-dihydronicotinamide [(BNA)₂] was prepared according to the literature.^{14,15} 9,10-Dihydro-10-methylacridine (AcrH₂) was prepared from 10-methylacridinium iodide (AcrH⁺I⁻) by reduction with NaBH₄ in methanol and purified by recrystallization from ethanol.^{16,17} Ammonium hexafluorophosphate (NH₄PF₆) was purchased from Aldrich and used as received without further purification. Tetra-*n*-butylammonium hexafluorophosphate (Bu₄NPF₆) was obtained from Tokyo Kasei Organic Chemicals, Japan, purified using standard methods,¹⁸ and dried under vacuum at 40 °C for at least 1 week prior to use. Dimethyl sulfoxide (DMSO) and chlorobenzene (PhCl) was purchased from Aldrich Co. and used as received without further purification.

Kinetic Measurements. $C_{60}^{\bullet-}$ was prepared by photoirradiation (>290 nm) of a deaerated DMSO/PhCl (1:1 v/v) solution containing C_{60} (1.0 × 10⁻³ M) and (BNA)₂ (4.5 × 10⁻⁴ M) with a 500 W xenon lamp (Ushio Optical ModelX SX-UID 500XAMQ) through a UV cutoff glass filter (Asahi Techno Glass UV-29). The concentration of $C_{60}^{\bullet-}$ thus formed was determined from the absorbance at $\lambda_{max} = 1080$ nm ($\epsilon = 1.2 \times 10^4$ M⁻¹ cm⁻¹). Kinetic measurements of electron-transfer reactions from $C_{60}^{\bullet-}$ (5.0 × 10⁻⁵ M) to O₂ in the presence and absence of NH₄PF₆ [(0–5.0) × 10⁻³ M] were performed using a Shimadzu 3100 spectrophotometer. All the kinetic measurements were carried out under pseudo-first-order conditions, where the concentrations of NH₄PF₆ were maintained at > 10fold excess of concentrations of $C_{60}^{\bullet-}$ at 298 K. Pseudo-firstorder rate constants were determined by least-squares curve fits using a personal computer.

^{*} To whom correspondence should be addressed. E-mail: fukuzumi@ chem.eng.osaka-u.ac.jp.

Determination of O₂ Concentrations in DMSO/PhCl (1:1 \mathbf{v}/\mathbf{v}). A square quartz cuvette (10 mm i.d.) was filled with a aerated solution of dimethyl sulfoxide and chlorobenzene [DMSO/PhCl (1:1 v/v)] (5.5 cm³) containing 10-methyl-9,10dihydroacridine (AcrH₂, 3.0×10^{-2} M) and acetic acid (1.6 × 10^{-3} M). When the solution was irradiated with a 500 W xenon lamp, the absorption band due to AcrH⁺ ($\lambda = 360$ nm, $\epsilon = 1.8$ $\times 10^4$ M⁻¹ cm⁻¹) appeared and the absorbance reached a limiting value after prolonged photoirradiation. Because AcrH₂ is oxidized by an equivalent amount of oxygen to produce AcrH⁺ in the presence of an acid under photoirradiation,^{19,20} the concentration of oxygen in air-saturated DMSO/PhCl was determined as 2.4×10^{-3} M from the limiting value of the absorbance and the ϵ value of AcrH⁺. The O₂ concentration in the O2-saturated DMSO/PhCl was estimated as 5-fold of that in air-saturated DMSO/PhCl.

ESR Measurements. The ESR spectra were recorded at low temperature on a JEOL X-band ESR spectrometer (JES-ME-LX). A quartz ESR tube (internal diameter: 5.5 mm) containing an oxygen-saturated solution of (BNA)₂ containing NH₄PF₆ or Bu₄NPF₆ at 143 K was irradiated in the cavity of the ESR spectrometer with the focused light of a 1000-W high-pressure Hg lamp (Ushio-USH1005D) through an aqueous filter. The ESR spectra were measured under nonsaturating microwave power conditions. The amplitude of modulation was chosen to optimize the resolution and the signal-to-noise (*S/N*) ratio of the observed spectra. The *g* values were calibrated with a Mn²⁺ marker.

Cyclic Voltammetry. Cyclic voltammetry measurements were performed at 298 K on a BAS 630B electrochemical analyzer in oxygen-saturated DMSO/PhCl (1:1 v/v) solution containing 0.10 M NH₄PF₆ or 0.10 M Bu₄NPF₆ as the supporting electrolyte at 298 K. A conventional three-electrode cell was used with a platinum working electrode (surface area of 0.3 mm²) and a platinum wire as the counter electrode. The Pt working electrode (BAS) was routinely polished with a BAS polishing alumina suspension and rinsed with acetone before use. The measured potentials were recorded with respect to the Ag/AgNO₃ (0.01 M) reference electrode. All potentials (vs Ag/Ag⁺) were converted to values vs SCE by adding 0.29 V.²¹

Theoretical Calculations. Density-functional theory (DFT) calculations were performed on a 8CPU workstation (PQS, Quantum Cube QS8-2400C-064). Geometry optimizations were carried out using the Becke3LYP functional and 6-31G basis set^{22-24} with the unrestricted Hartree–Fock (UHF) formalism and as implemented in the Gaussian 03 program Revision C.02. Graphical outputs of the computational results were generated with the Gauss View software program (ver. 3.09) developed by Semichem, Inc.

Results and Discussion

Acceleration Effect of NH_4^+ on Rates of Electron-Transfer Reduction of O₂. The dimeric 1-benzyl-1,4-dihydronicotinamide [(BNA)₂], which can act as a unique two electron donor,¹⁴ is used as electron sources to reduce C₆₀ to C₆₀^{•–} photochemically. The photoinduced electron transfer from the singlet excited state of (BNA)₂ to C₆₀ affords (BNA)₂^{•+} and C₆₀^{•–}, followed by a fast cleavage of the C–C bond of (BNA)₂^{•+} to produce 1-benzylnicotinamide radical (BNA[•]) and BNA⁺.¹⁴ The subsequent second electron transfer from BNA[•] to C₆₀ occurs rapidly judging from the lower oxidation potential of BNA[•] (E_{ox} vs SCE = -1.08 V)²⁵ than the reduction potential of C₆₀ ($E_{red} = -0.45$ V vs SCE).²⁶ Thus, once photoinduced electron transfer from (BNA)₂ to C₆₀ occurs, two equivalents of C₆₀^{•–} molecules are produced (Scheme 1). SCHEME 1

The formation of $C_{60}^{\bullet-}$ can be readily monitored by the NIR absorption band at 1080 nm, which is diagnostic of $C_{60}^{\bullet-}$.^{14,27} The C₆₀^{•-} reacts with O₂ slowly in an air-saturated mixed solution of dimethyl sulfoxide and chlorobenzene [DMSO/PhCl (1:1 v/v)] as shown in Figure 1A. Addition of NH₄PF₆ to an air-saturated DMSO/PhCl solution of C₆₀•- results in remarkable acceleration of the decay of C60. The mixed solvent of DMSO and PhCl (1:1 v/v) is used to dissolve both NH_4PF_6 and C_{60} . The decay of $C_{60}^{\bullet-}$ obeys pseudo first-order kinetics (see the first-order plot in Figure 1B). The pseudo-first-order rate constant (kobs) increases linearly with increasing concentration of NH₄PF₆. The slope of the linear plot of k_{obs} vs [NH₄PF₆] becomes 5 times larger when an O2-saturated DMSO/PhCl solution is employed instead of an air-saturated solution (Figure 2). This indicates that the decay rate of C_{60}^{-} is proportional to concentration of O2. Thus, an intermolecular electron transfer from C_{60}^{-} to O_2 is accelerated by the presence of NH₄PF₆. The second-order rate constant (k_{et}) of electron transfer from $C_{60}{}^{\bullet-}$ to O_2 in the presence of $NH_4{}^+$ (2.0 \times 10^{-3} M) is determined from the k_{obs} value (2.4 × 10⁻¹ s⁻¹) under air ([O₂] = 2.4×10^{-3} M) as 1.0×10^{2} M⁻¹ s⁻¹. The first-order dependence of the electron-

Figure 1. (A) Decay time profile of absorbance at 1080 nm due to C_{60} ⁻ (a) in the absence and (b) in the presence of NH₄PF₆ (1.0 × 10⁻³ M) in air-saturated DMSO/PhCl (1:1 v/v) at 298 K. (B) First-order plot for the decay of absorbance at $\lambda = 1080$ nm in the presence of NH₄PF₆ (1.0 × 10⁻³ M).

Figure 2. Plot of k_{obs} vs [NH₄⁺] for electron transfer from C₆₀⁻⁻ (5.0 × 10⁻⁵ M) to O₂ in air-saturated (O) and O₂-saturated (\bullet) DMSO/ PhCl (1:1 v/v) at 298 K.

Figure 3. ESR spectra observed in photoirradiation of an O₂-saturated DMSO/PhCl (1:1 v/v) solution containing (BNA)₂ (1.0×10^{-2} M) and (a) Bu₄NPF₆ (0.10 M) and (b) NH₄PF₆ (0.10 M) with a high-pressure mercury lamp at -130 °C.

transfer rate on concentration of NH₄PF₆ (Figure 2) indicates formation of a 1:1 complex between $O_2^{\bullet-}$ and NH₄PF₆. In contrast to the case of NH₄PF₆, addition of Bu₄NPF₆ resulted in no acceleration of electron transfer from $C_{60}^{\bullet-}$ to O_2 .

ESR Detection of NH₄⁺ Complex with O₂^{•-}. The complex formation of O₂^{•-} with NH₄⁺ is confirmed by ESR (vide infra). When an O₂-saturated DMSO/PhCl solution containing (BNA)₂ $(1.0 \times 10^{-2} \text{ M})$ and Bu₄NPF₆ (0.10 M) is irradiated with a highpressure mercury lamp, O₂^{•-} formed photochemically is detected by the ESR spectrum in frozen DMSO/PhCl at -130 °C which shows a well-known anisotropic ESR signal with $g_{||} = 2.102$ and $g_{\perp} = 2.006$ due to O₂^{•-} as shown in Figure 3a.^{28,29}

The ESR signal of $O_2^{\bullet-}$ is significantly changed by addition of NH₄PF₆ (0.10 M) to the (BNA)₂/O₂ system, which shows an ESR signal with $g_{||} = 2.090$ and $g_{\perp} = 2.008$, as shown in Figure 3b. The deviation of the $g_{||}$ -value from the free spin value ($g_e = 2.0023$) is known to be caused by the spin-orbit interaction, as given by eq 1, where λ is the spin-orbit coupling constant

$$g_{\rm H} = g_{\rm e} + 2[\lambda^2 / (\lambda^2 + \Delta E^2)]^{1/2}$$
(1)

(0.014 eV) and ΔE is the energy splitting of π_g levels due to the complex formation between $O_2^{\bullet-}$ and cations.²⁹⁻³¹ Under the conditions that $\Delta E \gg 1$, eq 1 is reduced to a simple relation, $g_{||} = g_e + 2\lambda/\Delta E$. The small $g_{||}$ value (2.090) in the presence of NH₄PF₆ as compared with the $g_{||}$ value in the presence of Bu₄-NPF₆ (2.102) is thereby attributed to the binding of $O_2^{\bullet-}$ with NH₄⁺, which results in the larger ΔE value. However, the binding of NH₄⁺ with $O_2^{\bullet-}$ is much weaker that that of metal ions acting as a strong Lewis acid such as Sc^{3+,29,32} The strong binding of Sc³⁺ with $O_2^{\bullet-}$ results in a large energy splitting of π_g levels, when the ESR signal of the $O_2^{\bullet-}/Sc^{3+}$ complex can be observed in solution due to the elongation of the relaxation time.³² In contrast to the case of the $O_2^{\bullet-}/Sc^{3+}$ complex, the ESR signal of the $O_2^{\bullet-}/NH_4^+$ complex could only be observed in a frozen medium.

Effect of NH₄⁺ on One-Electron Reduction Potentials of O₂. The binding of O₂^{•-} with NH₄⁺ is expected to shift the reduction potential of O₂ to a positive direction in the presence of NH₄PF₆. This is confirmed by the cyclic voltammograms (see Experimental Section). The E_{red} value for O₂/O₂^{•-} (-0.95 V vs SCE) in the presence of Bu₄NPF₆ (0.10 M) in DMSO/

Figure 4. Nernst plot of E_{red} for O₂ against log[NH₄⁺] in O₂-saturated DMSO/PhCl (1:1 v/v) at 298 K.

Figure 5. (a) Optimized structure and (b) spin distribution of the $O_2^{\bullet-}$ - NH_4^+ complex calculated at B3LYP/6-31G level.

PhCl is shifted significantly to -0.05 V vs SCE in the presence of NH₄PF₆ (0.10 M). This is shown in Figure 4, where the E_{red} values determined from the cyclic voltammetry measurements in DMSO/PhCl are plotted against log[NH₄PF₆]. The slope of the plot of E_{red} for O₂/O₂^{•-} vs log[NH₄PF₆] is 0.059. This is the expected slope (2.3*RT*/*F* = 0.057 at 298 K) by the Nernst equation (eq 2) for the 1:1 complex formation between O₂^{•-}

$$E_{\rm red} = E_{\rm red}^0 + (2.3RT/F) \log\{(1 + K_{\rm red}[\rm NH_4PF_6])/(1 + K_{\rm ox}[\rm NH_4PF_6])\} (2)$$

and NH₄⁺, where E_{red}^0 is the one-electron reduction potential in the absence of NH₄PF₆, K_{red} is the formation constant of the O₂•⁻/NH₄⁺ complex, and K_{ox} is the formation constant of the O₂/NH₄⁺ complex.³³

In the case of the $E_{\rm red}$ value of *p*-benzoquinone (Q) in the presence of NH₄⁺, the slope of Nernst plot was reported as 0.12, indicating a 1:2 complex, Q^{•-}/(NH₄⁺)₂.¹² The 1:2 complex between Q^{•-} and NH₄⁺ was detected by ESR.¹² In the case of O₂^{•-}, however, only a 1:1 complex is formed between O₂^{•-} and NH₄⁺.

The binding mode of $O_2^{\bullet-}$ with NH_4^+ is examined by the DFT calculation at the B3LYP/6-31G level (see Experimental Section). The computed optimized structure and spin distribution of the $O_2^{\bullet-}-NH_4^+$ complex are shown in Figure 5. The side-on binding of two hydrogens of NH_4^+ with $O_2^{\bullet-}$ is most stabilized as compared with the end-on binding of one hydrogen of NH_4^+ with $O_2^{\bullet-}$. This shows sharp contrast with the case of $O_2^{\bullet-}-Sc^{3+}$ complex in which Sc^{3+} has been reported to bind with $O_2^{\bullet-}$ in an end-on fashion.³²

Reorganization Energy of Electron Self-Exchange between O₂ and the O₂•⁻-NH₄⁺ Complex. According to the Marcus theory of electron transfer, the k_{et} value is given as a function of the free energy change of electron transfer (ΔG_{et}) for adiabatic outer-sphere electron transfer as given by eq 3, where λ is the

$$k_{\rm et} = Z \exp[-(\lambda/4)(1 + \Delta G_{\rm et}/\lambda)^2/RT]$$
(3)

reorganization energy of electron transfer and Z is the collision frequency taken as $1 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$.³⁴ The λ value of electron

transfer from $C_{60}^{\bullet-}$ to O_2 in the presence of NH₄⁺ (2.0 × 10⁻³ M) is determined as 67 ± 2 kcal mol⁻¹ from the k_{et} value (vide supra) and the ΔG_{et} value using eq 4, which is derived from eq

$$\lambda = 2[-RT \ln(k_{\rm et}/Z)] - \Delta G_{\rm et} - [(\Delta G_{\rm et} - 2[-RT \ln(k_{\rm et}/Z)])^2 - (\Delta G_{\rm et})^2]^{1/2}$$
(4)

3. The $\Delta G_{\rm et}$ value is obtained from the $E_{\rm ox}$ value of $C_{60}^{\bullet-}$, which is equivalent to the $E_{\rm red}$ value of C_{60} (-0.45 V vs SCE) and the $E_{\rm red}$ value of O₂ in the presence of 2.0 × 10⁻³ M NH₄⁺ (-0.15 V vs SCE) using eq 5, where *F* is the Faraday constant. The

$$\Delta G_{\rm et} = F(E_{\rm ox} - E_{\rm red}) \tag{5}$$

reorganization energy of electron transfer between D and A (λ_{DA}) is obtained as the average of the reorganization energy for the electron self-exchange between D and D^{•+} (λ_D) and that between A and A^{•-} (λ_A) , eq 6.³⁴ Thus, the $\lambda(O_2/O_2^{\bullet-}-NH_4^+)$

$$\lambda_{\rm DA} = (\lambda_{\rm D} + \lambda_{\rm A})/2 \tag{6}$$

value is determined as $126 \pm 4 \text{ kcal mol}^{-1}$ from the observed λ value of electron transfer from $C_{60}^{\bullet-}$ to O_2 in the presence of NH_4^+ (2.0 × 10^{-3} M) and the $\lambda(C_{60}^{\bullet-}/C_{60})$ value (8.3 kcal mol}^{-1})^{36} by eq 7. The $\lambda(O_2/O_2^{\bullet-}-NH_4^+)$ value is much larger

$$\lambda(O_2/O_2^{\bullet^-} - NH_4^+) = 2\lambda - \lambda(C_{60}^{\bullet^-}/C_{60})$$
(7)

than the $\lambda({}^{3}O_{2}/O_{2}^{\bullet-})$ value (45.5 ± 0.7 kcal mol⁻¹)³⁷ and the $\lambda({}^{1}O_{2}/O_{2}^{\bullet-})$ value (40 ± 2 kcal mol⁻¹).³⁸ Such a large λ value for the electron exchange between O₂ and O₂^{•-} in the presence of NH₄⁺ is attributed to the strong binding of O₂^{•-} with NH₄⁺ associated with the electron-transfer reduction of O₂ in the presence of NH₄⁺. A large λ value (104 kcal mol⁻¹) was also reported for the intramolecular electron transfer from ferrocene to naphthoquinone moiety in a ferrocene-naphthoquinone dyad in the presence of Sc³⁺ (5.0 × 10⁻⁴ M) because of strong binding of Sc³⁺ with naphthoquinone radical anion upon electron transfer.³⁹

In conclusion, the ammonium ion (NH_4^+) forms a strong hydrogen bond with $O_2^{\bullet-}$, which results in the small g_{\parallel} value of the ESR spectrum of $O_2^{\bullet-}$, significant acceleration of the rate of electron transfer from $C_{60}^{\bullet-}$ to O_2 , and a large positive shift of the one-electron reduction potential of $O_2^{.40}$

Acknowledgment. This work was partially supported by a Grant-in-Aid (Nos. 16205020 and 17550058) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and Notes

(1) Kryatov, S. V.; Rybak-Akimova, E. V.; Schindler, S. Chem. Rev. 2005, 105, 2175.

(2) (a) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. **1996**, 96, 2841. (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. **2004**, 104, 3947.

(3) (a) Scheiner, S. *Hydrogen Bonding*; Oxford University Press: Oxford, U.K., 1997. (b) Fukuzumi, S. In *Electron Transfer in Chemistry*; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. 4, pp 3–67.

(4) (a) Niemz, A.; Rotello, V. M. Acc. Chem. Res. **1999**, 32, 44. (b) Rotello, V. M. In *Electron Transfer in Chemistry*; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. 4, pp 68–87.

(5) (a) Breublinger, E.; Niemz, A.; Rotello, V. M. J. Am. Chem. Soc. **1995**, *117*, 5379. (b) Cuello, A. O.; McIntosh C. M.; Rotello, V. M. J. Am. Chem. Soc. **2000**, *122*, 3517.

(6) (a) Malmström, B. G. Acc. Chem. Res. 1993, 26, 332. (b) Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. 1996, 96, 2889. (c) Hoganson, C. W.; Babcock, G. T. Science 1997, 277, 1953.

(7) Okamura, M. Y.; Feher, G. *Annu. Rev. Biochem.* **1992**, *61*, 861.
(8) Isaacson, R. A.; Abresch, E. C.; Lendzian, F.; Boullais, C.; Paddock,

M. L.; Mioskowski, C.; Lubitz, W.; Feher, G. In *The Reaction Center of Photosynthic Bacteria: Structure and Dynamics*; Michel-Beyerle, M.-E., Ed.; Springer-Verlag: Berlin, 1996; pp 353–367.

(9) (a) O'Malley, P. J. J. Am. Chem. Soc. **1998**, 120, 5093. (b) O'Malley, P. J. J. Phys. Chem. A **1998**, 102, 248.

(10) Fukuzumi, S.; Yoshida, Y.; Okamoto, K.; Imahori, H.; Araki, Y.; Ito, O. J. Am. Chem. Soc. **2002**, 124, 6794.

(11) Fukuzumi, S.; Kitaguchi, H.; Suenobu T.; Ogo, S. Chem. Commun. 2002, 1984.

(12) Okamoto, K.; Ohkubo, K.; Kadish, K. M.; Fukuzumi, S. J. Phys. Chem. A 2004, 108, 10405.

(13) The study on the electrochemical reduction of the water-superoxide ion complex has recently been reported; see: Constntin, C.; Evans, D. H.; Robert, M.; Savéant, J.-M.; Singh, P. S. J. Am. Chem. Soc. **2005**, *127*, 12490.

(14) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.;
 Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998, 120, 8060.

(15) (a) Wallenfels, K.; Gellerich, M. Chem. Ber. 1959, 92, 1406. (b) Patz, M.; Kuwahara, Y.; Suenobu, T.; Fukuzumi, S. Chem. Lett. 1997, 567.

(16) Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem. Soc. **2000**, *122*, 4286.

(17) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305.

(18) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of Laboratory Chemicals*, 4th ed.; Pergamon Press: Elmsford, NY, 1996.

(19) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin Trans. 2 1989, 1037.

(20) Suga, K.; Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2005, 109, 10168.

(21) Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Nonaqueous Systems; Marcel Dekker: New York, 1990.

(22) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(23) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(24) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

(25) Fukuzumi S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305.

(26) The E_{red} values of C₆₀ and O₂ were determined by the cyclic voltammogram in the presence of Bu₄NPF₆ (0.10 M) in DMSO/PhCl (1:1 v/v).

(27) Lawson, D. R.; Feldheim, D. L.; Foss, C. A.; Dorhout, P. K.; Elliott, C. M.; Martin C. R.; Parkinson, B. J. Electrochem. Soc. **1992**, *139*, L68.

(28) Bagchi, R. N.; Bond, A. M.; Scholz F.; Stösser, R. J. Am. Chem. Soc. 1989, 111, 8270.

(29) Fukuzumi S.; Ohkubo, K. Chem. Eur. J. 2000, 6, 4532.

(30) (a) Känzig, W.; Cohen, M. H. Phys. Rev. Lett. 1959, 3, 509. (b) Zeller, H. R.; Kanzig, W. Helv. Phys. Acta 1967, 40, 845.

(31) Kasai, P. H. J. Chem. Phys. **1965**, 43, 3322.

(32) Fukuzumi, S.; Patz, M.; Suenobu, T.; Kuwahara, Y.; Itoh, S. J. Am. Chem. Soc. **1999**, 121, 1605.

(33) Meites, L. In *Polarographic Techniques*, 2nd ed.; Wiley: New York, 1965; pp 203–301.

(34) (a) Marcus, R. A. Annu. Rev. Phys. Chem. **1964**, 15, 155. (b) Marcus, R. A. Angew. Chem., Int. Ed. Engl. **1993**, 32, 1111.

(35) Fukuzumi, S.; Nakanishi, I.; Suenobu, T.; Kadish, K. M. J. Am. Chem. Soc. **1999**, *121*, 3468.

(36) Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Guldi, D. M. Chem. Eur. J. 2003, 9, 1585.

(37) Lind, J.; Shen, X.; Merényi, G.; Jonsson, B. Ö. J. Am. Chem. Soc. 1989, 111, 7654.

(38) Fukuzumi, S.; Fujita, S.; Suenobu, T.; Yamada, H.; Imahori, H.; Araki, Y.; Ito, O. J. Phys. Chem. A **2002**, 106, 1241.

(39) Okamoto, K.; Imahori, H.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 7014.

(40) Protonation of His-516 has been reported to result in a reduction of the activation energy barrier by 6.0 kcal mol⁻¹ due to a decrease in the reorganization energy rather than an enhancement of the driving force by electrostatic stabilization for O_2^{--} during activation of O_2 by the flavoprotein glucose oxidase; see: Roth, J. P.; Klinman, J. P. *Proc. Natl. Acad. Sci. U.S.A.* **2003**, *100*, 62. In contrast, the acceleration of electron-transfer reduction of O_2 by NH₄⁺ in solution results from a large positive shift of the one-electron reduction potential of O_2 due to the strong hydrogen bond of NH₄⁺ with O_2^{--} , when the reorganization energy of electron-transfer becomes much larger than the value in the absence of NH₄⁺.